

Preparations for a Proposal to Upgrade the SSD

(and a request for ideas and help)

Jim Thomas
Lawrence Berkeley National Laboratory

September 27th, 2007

Why Upgrade the SSD

- It's a beautiful detector it needs to be upgraded to meet the DAQ 1000 era specifications
- It will deliver incremental improvements in the reconstructable yield of the strange mesons and baryons
 - K, Λ , Ξ , Ω
- It will have improved single-track high p_T resolution
- It will improve the invariant mass resolution for resonances and spectra measurements
- It is thin and so can improve signal to noise ratio for nonphotonic electrons
- It is essential for the HFT Upgrade (~\$16M)

It's a beautiful detector

- The SSD *is* visually appealing (4 cm wafers at 23 cm radius)
- Technology
 - 30 μ m x 750 μ m resolution at 23 cm radius (compare TPC at 1.5 x 1.5 mm)
 - Thin 1% radiation length
 - Crossed strips with charge sharing ... no ambiguous hits
- DAQ rate limited to 200 Hz

The Upgrade

- Upgrade to DAQ 1000 Specs
 - Control Board
 - ADC Board
 - RDO board (not shown)
- Si Wafers remain the same
 - Mechanical structures remain the same

 Cooling and conventional systems also need an upgrade to improve reliability

The SSD Delivers High Spatial Resolution

0.6 0.7

Transverse Momentum (GeV/c)

– TPC+SSD (red)

300 μm vertex constraint

The SSD Delivers High P_T Momentum Resolution

- TPC pointing resolution without a vertex constraint
- ½ field (blue), full field (red), and full field with the SSD (pink)

Invariant Mass Resolution

Conclusion & a request for help

- The SSD delivers improved pointing resolution and invariant mass resolution
- It can do this on a track by track basis
 - Without resort to a vertex constraint
- It works for single tracks but also in p-p, minBias, and UPC collisions where the vertex is not well defined
- I would like other examples to show the benefits of the SSD
 - Quantify the improvement in for the strange mesons and baryons ?
 - The ϕ ?
 - Anything else that I forgot ??